In Silico Docking to Explicate Interface between Plant-Originated Inhibitors and E6 Oncogenic Protein of Highly Threatening Human Papillomavirus 18

نویسندگان

  • Satish Kumar
  • Lingaraja Jena
  • Maheswata Sahoo
  • Mrunmayi Kakde
  • Sangeeta Daf
  • Ashok K. Varma
چکیده

The leading cause of cancer mortality globally amongst the women is due to human papillomavirus (HPV) infection. There is need to explore anti-cancerous drugs against this life-threatening infection. Traditionally, different natural compounds such as withaferin A, artemisinin, ursolic acid, ferulic acid, (-)-epigallocatechin-3-gallate, berberin, resveratrol, jaceosidin, curcumin, gingerol, indol-3-carbinol, and silymarin have been used as hopeful source of cancer treatment. These natural inhibitors have been shown to block HPV infection by different researchers. In the present study, we explored these natural compounds against E6 oncoprotein of high risk HPV18, which is known to inactivate tumor suppressor p53 protein. E6, a high throughput protein model of HPV18, was predicted to anticipate the interaction mechanism of E6 oncoprotein with these natural inhibitors using structure-based drug designing approach. Docking analysis showed the interaction of these natural inhibitors with p53 binding site of E6 protein residues 108-117 (CQKPLNPAEK) and help reinstatement of normal p53 functioning. Further, docking analysis besides helping in silico validations of natural compounds also helped elucidating the molecular mechanism of inhibition of HPV oncoproteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein

Human papillomaviruses (HPV) are a group of strong human carcinogen viruses considered to be the fourth leading cause of mortality among women in the world. HPV is the most important cause of cervical cancer, which is the second most common cancer in women living in low and middle-income countries. To date, there is no effective cure for an ongoing HPV infection; therefore, it is required to in...

متن کامل

Elucidating Molecular Interactions of Natural Inhibitors with HPV-16 E6 Oncoprotein through Docking Analysis

Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The life-threatening infection caused by HPV demands the need for designing anticancerous drugs. In the recent years, different compounds from natural origins, such as carrageenan, curcumin, epigallocatechin gallate, indole-3-carbinol, jaceosidin, and withaferin, have been used as a hopeful sour...

متن کامل

In Silico Screening Studies on Methanesulfonamide Derivatives as Dual Hsp27 and Tubulin Inhibitors Using QSAR and Molecular Docking

The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is increased in response to various stress stimuli such as anticancer chemotherapy. This phenomenon can lead to survive of the cells and causes drug resistance. In this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin inhibitors in the treatment of cancer were applied to quantitative structure–act...

متن کامل

Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types.

Human papillomavirus (HPV) replication occurs in terminally differentiating epithelium, and requires the activation of cellular DNA replication proteins. Unscheduled DNA replication can result in the induction of apoptosis, and the viral E6 protein induces the degradation of p53 to prevent this. It has recently been shown that HPV-18 E6 can also stimulate the degradation of Bak, a pro-apoptotic...

متن کامل

In silico mechanistic analysis of IRF3 inactivation and high-risk HPV E6 species-dependent drug response

The high-risk human papillomavirus E6 (hrHPV E6) protein has been widely studied due to its implication in cervical cancer. In response to viral threat, activated kinases phosphorylate the IRF3 autoinhibitory domain, inducing type1 interferon production. HPV circumvents the antiviral response through the possible E6 interaction with IRF3 and abrogates p53's apoptotic activity by recruiting E6-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015